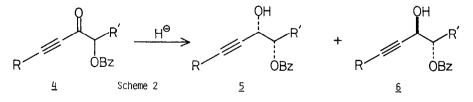
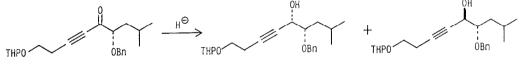

STEREOSELECTIVE REDUCTION OF α -ALKOXY ACETYLENIC KETONES WITH ZINC BOROHYDRIDE AND K-SELECTRIDE.


TAKASHI Takahashi*, MASAHIRO Miyazawa and JIRO Tsuji*

Summary: Reduction of α -benzyloxy acetylenic ketones with zinc borohydride afforded the erythro-acetylenic vicinal diols in 95% stereoselectivity, while reduction with K-selectride gave the isomeric threo-diols in 90% stereoselectivity.

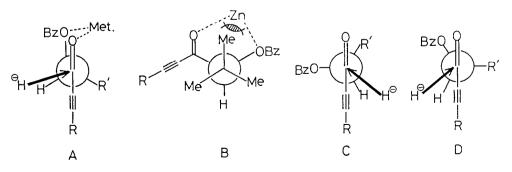
Repetition of 1,3-chiral transfer reaction by palladium catalyzed allylation¹⁾, coupling reaction of organocuprate²⁾, and [3,3]- or [2,3]-sigmatropic rearrangements of allylic compounds³⁾, as shown in scheme 1, offer a powerful method for construction of the vicinal carbon asymmetric centers.


In these overall transformations, choices of E-(or Z-) configuration of the double bond and the threo- (or erythro-) stereochemistry of the vicinal diol 1 are crucial to induce the desired stereochemistry on the newly formed C-C bond in 3. The selective protection of diols is also important for the introduction of different nucleophiles C^1 and C^2 . Thus the question is how to prepare selectively four possible isomers 1 (E-,Z-double bonds, erythro-, threo-diols). Obviously it is efficient if all isomers of allylic diol 1 can be derived from a single intermediate. The α -alkoxy ketones 4 are suitable intermediates⁴, if the stereoselective reduction of 4 is possible. The triple bond in the product 5 (or 6) can be reduced to either E- or Z-double bond by

the reduction with $LiAlH_4$ or catalytic hydrogenation. We have investigated the stereoselectivity in the reduction of α -alkoxy acetylene ketones 4 with various hydride reagents.

Recently, Nakata and Oishi⁵⁾ examined the stereoselectivity in the reduction of ketones having oxygen substituents and found the erythro-selection of α -hydroxy ketone with $\text{Zn}(\text{BH}_4)_2$ and the threo-selection of its α -silyoxy ketone with $\text{NaAlH}_2(\text{OCH}_2\text{CH}_2\text{OMe})_2$ (Red-Al). Hiyama⁶⁾ also reported the Bu₄NF catalyzed threo-selection and the CF₃CO₂H catalyzed erythro-selection in the reduction of the α -benzyloxy ketones with hydrosilane. So far stereoselectivities in the reduction of α -alkoxy ketones with Zn(BH₄)₂ and K-selectride have not been reported.

At first, we have examined the stereoselectivity in reductions of the α benzyloxy ketone **4a** with various hydride reagents (Scheme 3; Table 1). The $\text{Zn}(\text{BH}_4)_2$ reduction proceeded with high stereoselectivity (95%) through the cyclic model **A** to give the erythro product **6a**. The Red-Al reduction of α benzyloxy ketone **4a** also gave the erythro-**6a** as the major product. These results are very different from the threo-selective reduction of α -silyoxy ketone with Red-Al through the open model **C** reported by Nakata and Oishi. The



threo-5a

erythro-6a

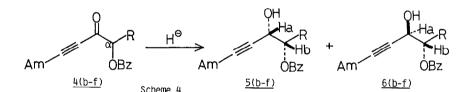

Scheme 3

Table 1							
Reagent	Solvent	Temp, (^O C)	Ratio (5a:6a)				
Zn(BH ₄) ₂	Et ₂ 0	-30	5 : 95				
Red-A1	Toluene	-78	16 : 84				
LiAlH ₄	THF	-30	32 : 68				
ⁱ Bu ₂ AlH	THF	-78	48 : 52				
L-selectride	THF	-78	73 : 27				
K-selectride	THF	-78	85 : 15				
K-selectride	THF	-95	90 : 10				

erythro-selection with Red-Al can be explained by the cyclic model A. The relatively poor selectivity with $LiAlH_4$ and the nonselectivity with Dibal-H were observed. On the other hand, the reduction with K-(or L-) selectride gave the threo product 5a with high stereoselectivity(90%). The threo-selection found with K-selectride, having low coordinating ability, can be explained by the open model C.

To establish the generality of $Zn(BH_4)_2$ and K-selectride reduction, we have examined reduction of a number of α -benzyloxy ketones (scheme 4; Table 2) and found the erythro-selection with $Zn(BH_4)_2$ and the threo-selection with Kselectride. Interestingly, β -substitution in 4 has significant effect on stereoselectivity in $Zn(BH_4)_2$ reduction. If β -carbon was sufficiently hindered (entry 5), then chelation-directed stereoselectivity was completely lost (see the cyclic model B). While the less hindered substitution at β -carbon (entry 1) can have the weaker control on hydride addition course in the cyclic model A. Therefore a moderately bulky nature at β -carbon is necessary for efficient erythro-selection with $Zn(BH_4)_2$. In K-selectride reduction, however, the secondary carbon at β -position (entries 8,9) led to two types of open models C and D and thus lowered the stereoselectivity. Moreover, tertiary butyl group (entry 10) blocked the 1,2-reduction and only the 1,4-reduction was observed.

Table	2						
Ketone	R	Entry	Zn(BH ₄ Yield(%)) ₂ / Ether Ratio(<u>5:6</u>)	Entry		tride / THF
		l				Yield(%)	Ratio(<u>5:6</u>)
<u>4b</u>	Me	1	94	17 : 87	6	99	90 : 10
<u>4c</u>	n-C ₆ H ₁₃	2	95	6 ; 94	1 1 7 1	99	89 : 11
<u>4d</u>	i _{Pr}	3	90	8:92	8	99	75 : 25
<u>4e</u>	PhMeCH-	4	98	10 : 90	9	98	69 : 31
<u>4f</u>	t _{Bu}	5	6,4	50 : 50	10	78	

The stereostructures of erythro-5 and threo-6 were determined by the 1 H-NMR coupling constants (Table 3) based on the general rule that J_{ab} of the threo-form is larger than J_{ab} of the erythro-form when substitution on the vicinal carbon atoms are capable of forming a hydrogen bond. Moreover, the structures of 5c and 6c, obtained by $\text{Zn}(\text{BH}_4)_2$ and K-selectride reductions respectively, were confirmed by the selective conversions to the Z- and E- olefins 9 and 10 (Scheme 5). The chemical shift in 13 C-NMR of the Z-allylic carbon in 9 showed lower shift than that of the E-allylic carbon.

Table 3				
Compound	Jab	(Hz)	OH	C
compound	threo- <u>5</u>	erythro- <u>6</u>		Г 1
۵	5.29*	3.33*	C ₆ H ₁₃	
b	6.84	3,53	C _E H ₁₁ 5c OBZ	C Hu
С	5,98	3,75	5 11 20 (7)	^C 5 ^H 11 <u>6c</u>
d	4.86	4.41	ОН ↓ '*'	он 🗸
е			C7H15 C6H13	C7H15
f	3,33	1.98	Z OH	97"15 <u>8</u> ,0
were obsei	coupling co rved after		(2)	
was remove	20.		C7H15	с ₇ н ₁₅
				<u>10</u>

Conditions: (1) $H_2(1 \text{ atm})$, PtO_2 , AcOEt, r.t. (2) i)(MeO)₂CHNMe₂, Toluene, 100⁰C; ii)Ac₂O, 160⁰C

Scheme 5

Ċ₆H₁₃

References and Notes

- a) B.M.Trost, T.P.Klun, J.Am.Chem.Soc., 103, 1864 (1981)
 b) T.Takahashi, Y.Jinbo, K.Kitamura, J.Tsuji, Tetrahedron Lett., 25 5929 (1984)
- 2) N.R.Schmuff, B.M.Trost, J.Org.Chem., 48 1404 (1983)
- 3) F.E.Ziegler, Acc.Chem.Res., 10 227 (1977)
- 4) Based on Still's results, (W.C.Still, J.A.Schneider, Tetrehedron Lett., 21, 1035 (1980), that threo-selection was observed in the nucleophilic addition of Grignard reagent to α -alkoxy aldehyde, we first examined the reaction of Grignard reagent i with the α -alkoxy aldehyde ii. However all attempts, changing the reaction temperature (-30°C -110°C), the protecting groups and additive metals, gave roughly 1:1 mixture of products.

$$R = -M_{g}Br + H \xrightarrow{V} R' \xrightarrow{S + 6} OR''$$

- 5) T.Nakata, T.Tanaka, T.Oishi, Tetrahedron Lett., 24 2653 (1983)
- 6) T.Hiyama, K.Kobayashi, M.Fujita, Tetrahedron Lett., 25 4959 (1984)

(Received in Japan 27 June 1985)